Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 1156-1171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513692

RESUMO

In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Monoterpenos/metabolismo , Catharanthus/metabolismo , Germinação , Sementes/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Diferenciação Celular , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Microscopy (Oxf) ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450734

RESUMO

Correlative array tomography, combining light and electron microscopy via serial sections, plays a crucial role in the three-dimensional ultrastructural visualization and molecular distribution analysis in biological structures. To address the challenges of aligning fluorescence and electron microscopy images and aligning serial sections of irregularly shaped biological specimens, we developed a diamond notch knife, a new tool for puncturing holes using a diamond needle. The diamond needle featured a triangular and right-angled tip, enabling the drilling of deep holes upon insertion into the polished block face. This study describes the application of the diamond notch knife in correlative array tomography.

3.
Nat Commun ; 15(1): 1098, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321030

RESUMO

In angiosperms, the transition from floral-organ maintenance to abscission determines reproductive success and seed dispersion. For petal abscission, cell-fate decisions specifically at the petal-cell base are more important than organ-level senescence or cell death in petals. However, how this transition is regulated remains unclear. Here, we identify a jasmonic acid (JA)-regulated chromatin-state switch at the base of Arabidopsis petals that directs local cell-fate determination via autophagy. During petal maintenance, co-repressors of JA signaling accumulate at the base of petals to block MYC activity, leading to lower levels of ROS. JA acts as an airborne signaling molecule transmitted from stamens to petals, accumulating primarily in petal bases to trigger chromatin remodeling. This allows MYC transcription factors to promote chromatin accessibility for downstream targets, including NAC DOMAIN-CONTAINING PROTEIN102 (ANAC102). ANAC102 accumulates specifically at the petal base prior to abscission and triggers ROS accumulation and cell death via AUTOPHAGY-RELATED GENEs induction. Developmentally induced autophagy at the petal base causes maturation, vacuolar delivery, and breakdown of autophagosomes for terminal cell differentiation. Dynamic changes in vesicles and cytoplasmic components in the vacuole occur in many plants, suggesting JA-NAC-mediated local cell-fate determination by autophagy may be conserved in angiosperms.


Assuntos
Arabidopsis , Ciclopentanos , Oxilipinas , Arabidopsis/genética , Flores/genética , Espécies Reativas de Oxigênio/metabolismo , Autofagia , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639600

RESUMO

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Assuntos
Oryza , Oryza/genética , Citocininas/genética , Nucleosídeos de Purina , N-Glicosil Hidrolases/genética , Nucleosídeos , Parede Celular/genética
5.
Mol Ecol ; 32(17): 4801-4813, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37464469

RESUMO

In the family Fagaceae, fertilization is delayed by several weeks to 1 year after pollination, leading to 1- or 2-year fruiting species depending on whether fruiting occurs in the same or the next year after flowering. To investigate physiological responses underlying the regulation of delayed fertilization, we monitored seasonal changes in genome-wide gene expression in tissues including leaves and buds over 2 years under natural conditions in one- (Quercus glauca) and 2-year fruiting species (Lithocarpus edulis). Genes associated with metabolic changes in response to winter cold, photosynthesis and cell proliferation, which are essential for survival and growth, showed highly conserved seasonal expression profiles between species. However, seasonal expression profiles diverged between species in genes associated with pollination, an important process contributing to the origin and maintenance of the reproductive barrier between plant species. By comparing seasonal progression of ovule development and gene expression in pistillate flowers, we revealed that ovules started developing after winter in the 2-year fruiting species, which could be linked to the activation of genes involved in fertilization and female gametophyte development after winter. These findings suggest that the 2-year fruiting species may have evolved a requirement of winter cold to prevent fertilization before winter and facilitate fertilization and embryo development in the following spring when temperature rises. This study offers new possibilities to explore the evolution of reproductive strategies in Fagaceae.


Assuntos
Quercus , Transcriptoma , Estações do Ano , Transcriptoma/genética , Reprodução/fisiologia , Flores/fisiologia , Fertilização
6.
Plant Biotechnol (Tokyo) ; 38(3): 305-310, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34782816

RESUMO

Plants release specialized (secondary) metabolites from their roots to communicate with other organisms, including soil microorganisms. The spatial behavior of such metabolites around these roots can help us understand roles for the communication; however, currently, they are unclear because soil-based studies are complex. Here, we established a multimodal metabolomics approach using imaging mass spectrometry (IMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to spatially assign metabolites under laboratory conditions using agar. In a case study using Catharanthus roseus, we showed that 58 nitrogen (N)-containing metabolites are released from the roots into the agar. For the metabolite assignment, we used 15N-labeled and non-labeled LC-MS/MS data, previously reported. Four metabolite ions were identified using authentic standard compounds as derived from monoterpene indole alkaloids (MIAs) such as ajmalicine, catharanthine, serpentine, and yohimbine. An alkaloid network analysis using dot products and spinglass methods characterized five clusters to which the 58 ions belong. The analysis clustered ions from the indolic skeleton-type MIAs to a cluster, suggesting that other communities may represent distinct metabolite groups. For future chemical assignments of the serpentine community, key fragmentation patterns were characterized using the 15N-labeled and non-labeled MS/MS spectra.

7.
Proc Natl Acad Sci U S A ; 117(49): 31500-31509, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33219124

RESUMO

Active membrane transport of plant hormones and their related compounds is an essential process that determines the distribution of the compounds within plant tissues and, hence, regulates various physiological events. Here, we report that the Arabidopsis NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY 7.3 (NPF7.3) protein functions as a transporter of indole-3-butyric acid (IBA), a precursor of the major endogenous auxin indole-3-acetic acid (IAA). When expressed in yeast, NPF7.3 mediated cellular IBA uptake. Loss-of-function npf7.3 mutants showed defective root gravitropism with reduced IBA levels and auxin responses. Nevertheless, the phenotype was restored by exogenous application of IAA but not by IBA treatment. NPF7.3 was expressed in pericycle cells and the root tip region including root cap cells of primary roots where the IBA-to-IAA conversion occurs. Our findings indicate that NPF7.3-mediated IBA uptake into specific cells is required for the generation of appropriate auxin gradients within root tissues.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Gravitropismo , Indóis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Gravitropismo/efeitos dos fármacos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Indóis/química , Indóis/farmacologia , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
8.
Nat Commun ; 10(1): 191, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643123

RESUMO

The perception mechanism for the strigolactone (SL) class of plant hormones has been a subject of debate because their receptor, DWARF14 (D14), is an α/ß-hydrolase that can cleave SLs. Here we show via time-course analyses of SL binding and hydrolysis by Arabidopsis thaliana D14, that the level of uncleaved SL strongly correlates with the induction of the active signaling state. In addition, we show that an AtD14D218A catalytic mutant that lacks enzymatic activity is still able to complement the atd14 mutant phenotype in an SL-dependent manner. We conclude that the intact SL molecules trigger the D14 active signaling state, and we also describe that D14 deactivates bioactive SLs by the hydrolytic degradation after signal transmission. Together, these results reveal that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Hidrólise , Mutação , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética
9.
Plant Cell Physiol ; 60(1): 29-37, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169882

RESUMO

The plant pathogen Agrobacterium tumefaciens infects plants and introduces the transferred-DNA (T-DNA) region of the Ti-plasmid into nuclear DNA of host plants to induce the formation of tumors (crown galls). The T-DNA region carries iaaM and iaaH genes for synthesis of the plant hormone auxin, indole-3-acetic acid (IAA). It has been demonstrated that the iaaM gene encodes a tryptophan 2-monooxygenase which catalyzes the conversion of tryptophan to indole-3-acetamide (IAM), and the iaaH gene encodes an amidase for subsequent conversion of IAM to IAA. In this article, we demonstrate that A. tumefaciens enhances the production of both IAA and phenylacetic acid (PAA), another auxin which does not show polar transport characteristics, in the formation of crown galls. Using liquid chromatography-tandem mass spectroscopy, we found that the endogenous levels of phenylacetamide (PAM) and PAA metabolites, as well as IAM and IAA metabolites, are remarkably increased in crown galls formed on the stem of tomato plants, implying that two distinct auxins are simultaneously synthesized via the IaaM-IaaH pathway. Moreover, we found that the induction of the iaaM gene dramatically elevated the levels of PAM, PAA and its metabolites, along with IAM, IAA and its metabolites, in Arabidopsis and barley. From these results, we conclude that A. tumefaciens enhances biosynthesis of two distinct auxins in the formation of crown galls.


Assuntos
Agrobacterium tumefaciens/metabolismo , Vias Biossintéticas , Ácidos Indolacéticos/metabolismo , Tumores de Planta/microbiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Hordeum/microbiologia , Ácidos Indolacéticos/química , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Metaboloma , Fenilacetatos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/metabolismo
10.
Plant Cell Physiol ; 56(8): 1641-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26076971

RESUMO

The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenases/metabolismo , Fenilacetatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Oxigenases/genética , Plantas Geneticamente Modificadas , Transdução de Sinais , Zea mays/genética , Zea mays/crescimento & desenvolvimento
11.
Plant Cell Physiol ; 56(6): 1059-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25713176

RESUMO

The structural requirements of strigolactones (SLs) involved in germination induction of root parasitic plants and hyphal branching in arbuscular mycorrhizal (AM) fungi have been extensively studied. However, our knowledge of the requirements of SLs involved in shoot branching inhibition in plants is still limited. To address this question, we investigated the structure-activity relationships of SLs in shoot branching inhibition in rice and Arabidopsis. SLs possess a four-ring structure, with a tricyclic lactone (ABC-rings) connected to a methylbutenolide part (D-ring) via an enol ether bridge. Here, we show that the the (R) configuration at C-2', which determines the steric position of the D-ring relative to the enol ether olefin bond, is critical for the hormonal activity in rice. Replacement of the enol ether moiety by an alkoxy or imino ether resulted in a severe reduction in biological activity in rice. Moreover, yeast two-hybrid experiments using a possible SL receptor, DWARF14 (D14), and a repressor in the SL signaling pathway, DWARF53 (D53), showed that D14 can interact with D53 in the presence of (2'R) stereoisomers of SLs, but not (2'S) stereoisomers, suggesting that the stereostructure of SLs is crucial for the interaction of these proteins. When GR5, an AB-ring-truncated analog, was applied to the hydroponic culture medium, strong inhibition of shoot branching was observed both in rice and in Arabidopsis. However, GR5 was only weakly active when directly applied to the axillary buds of Arabidopsis. Our results indicate that the difference in plant species and application methods greatly influences the apparent SL biological activity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Lactonas/farmacologia , Oryza/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Meios de Cultura , Éter/química , Germinação/efeitos dos fármacos , Hidroponia , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Lactonas/química , Oryza/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estereoisomerismo , Técnicas do Sistema de Duplo-Híbrido
12.
Plant Cell Physiol ; 54(11): 1837-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24009336

RESUMO

Endogenous levels of bioactive gibberellins (GAs) are controlled by both biosynthetic and inactivation processes, and some cytochrome P450s are involved in this control mechanism. We have previously reported that CYP714B1 and CYP714B2 encode the enzyme GA 13-oxidase, which is required for GA1 biosynthesis, and that CYP714D1 encodes GA 16α,17-epoxidase, which inactivates the non-13-hydroxy GAs in rice. Arabidopsis has two CYP714 members, CYP714A1 and CYP714A2. To clarify the possible role of these genes in GA metabolism, enzymatic activities of their recombinant proteins were analyzed using a yeast expression system. We found that the recombinant CYP714A1 protein catalyzes the conversion of GA12 to 16-carboxylated GA12 (16-carboxy-16ß,17-dihydro GA12), a previously unidentified GA metabolite. Bioassays of this GA product showed that CYP714A1 is an inactivation enzyme in Arabidopsis. This was confirmed by the extreme GA-deficient dwarf phenotype shown by CYP714A1-overexpressing plants. Intriguingly, the recombinant CYP714A2 protein catalyzed the conversion of ent-kaurenoic acid into steviol (ent-13-hydroxy kaurenoic acid). When GA12 was used as a substrate for CYP714A2, 12α-hydroxy GA12 (GA111) was produced as a major product and 13-hydroxy GA12 (GA53) as a minor product. Transgenic Arabidopsis plants overexpressing the CYP714A2 gene showed semi-dwarfism. GA analysis showed that the levels of non-13-hydroxy GAs, including GA4, were decreased, whereas those of 13-hydroxy GAs, including GA1 (which is less active than GA4), were increased in the transgenic plants. Our results suggest that the CYP714 family proteins contribute to the production of diverse GA compounds through various oxidations of C and D rings in both monocots and eudicots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Germinação , Giberelinas/análise , Giberelinas/química , Modelos Biológicos , Mutação , Oxirredução , Fenótipo , Plantas Geneticamente Modificadas , Proteínas Recombinantes
13.
Proc Natl Acad Sci U S A ; 110(5): 1947-52, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319637

RESUMO

Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Oryza/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Hidroxilação , Immunoblotting , Oxigenases de Função Mista/genética , Mutação , Oryza/genética , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Sf9
14.
Plant J ; 71(4): 575-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22458548

RESUMO

The micropylar region of endosperm in a seed, which is adjacent to the radicle tip, is called the 'endosperm cap', and is specifically activated before radicle emergence. This activation of the endosperm cap is a widespread phenomenon among species and is a prerequisite for the completion of germination. To understand the mechanisms of endosperm cap-specific gene expression in tomato seeds, GeneChip analysis was performed. The major groups of endosperm cap-enriched genes were pathogenesis-, cell wall-, and hormone-associated genes. The promoter regions of endosperm cap-enriched genes contained DNA motifs recognized by ethylene response factors (ERFs). The tomato ERF1 (TERF1) and its experimentally verified targets were enriched in the endosperm cap, suggesting an involvement of the ethylene response cascade in this process. The known endosperm cap enzyme endo-ß-mannanase is induced by gibberellin (GA), which is thought to be the major hormone inducing endosperm cap-specific genes. The mechanism of endo-ß-mannanase induction by GA was also investigated using isolated, embryoless seeds. Results suggested that GA might act indirectly on the endosperm cap. We propose that endosperm cap activation is caused by the ethylene response of this tissue, as a consequence of mechanosensing of the increase in embryonic growth potential by GA action.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Sementes/genética , Solanum lycopersicum/genética , Sequência de Bases , Parede Celular/genética , Endosperma/efeitos dos fármacos , Endosperma/genética , Germinação , Giberelinas/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Dados de Sequência Molecular , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , beta-Manosidase/genética , beta-Manosidase/metabolismo
15.
Plant Cell Physiol ; 51(7): 1118-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20542891

RESUMO

Strigolactones (SLs) or SL-derived metabolite(s) have recently been shown to act as endogenous inhibitors of axillary bud outgrowth. SLs released from roots induce hyphal branching of arbuscular mycorrhizal (AM) fungi that facilitate the uptake of inorganic nutrients, such as phosphate (Pi) and nitrate, by the host plants. Previous studies have shown that SL levels in root exudates are highly elevated by Pi starvation, which might contribute to successful symbiosis with AM fungi in the rhizosphere. However, how endogenous SL levels elevated by Pi starvation contribute to its hormonal action has been unknown. Here, we show that tiller bud outgrowth in wild-type rice seedlings is inhibited, while root 2'-epi-5-deoxystrigol (epi-5DS) levels are elevated, in response to decreasing Pi concentrations in the media. However, the suppression of tiller bud outgrowth under Pi deficiency does not occur in the SL-deficient and -insensitive mutants. We also show that the responsiveness to exogenous SL is slightly increased by Pi deficiency. When Pi-starved seedlings are transferred to Pi-sufficient media, tiller bud outgrowth is induced following a decrease in root epi-5DS levels. Taken together, these results suggest that elevated SL levels by Pi starvation contribute to the inhibition of tiller bud outgrowth in rice seedlings. We speculate that SL plays a dual role in the adaptation to Pi deficiency; one as a rhizosphere signal to maximize AM fungi symbiosis for improved Pi acquisition and the other as an endogenous hormone or its biosynthetic precursor to optimize shoot branching for efficient Pi utilization.


Assuntos
Lactonas/metabolismo , Oryza/crescimento & desenvolvimento , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Brotos de Planta/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Oryza/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
16.
Nature ; 455(7210): 195-200, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18690207

RESUMO

Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class-or their biosynthetic precursors-in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.


Assuntos
Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Terpenos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Lactonas/análise , Lactonas/química , Lactonas/metabolismo , Mutação , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/parasitologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/parasitologia , Plântula , Terpenos/análise , Terpenos/química , Terpenos/metabolismo
17.
Plant Cell Physiol ; 48(3): 555-61, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17289793

RESUMO

Gibberellin levels in imbibed Arabidopsis thaliana seeds are regulated by light via phytochrome, presumably through regulation of gibberellin biosynthesis genes, AtGA3ox1 and AtGA3ox2, and a deactivation gene, AtGA2ox2. Here, we show that a loss-of-function ga2ox2 mutation causes an increase in GA(4) levels and partly suppresses the germination inability during dark imbibition after inactivation of phytochrome. Experiments using 2,2-dimethylGA(4), a GA(4) analog resistant to gibberellin 2-oxidase, in combination with ga2ox2 mutant seeds suggest that the efficiency of deactivation of exogenous GA(4) by AtGA2ox2 is dependent on light conditions, which partly explains phytochrome-mediated changes in gibberellin effectiveness (sensitivity) found in previous studies.


Assuntos
Arabidopsis/metabolismo , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Escuridão , Genes de Plantas , Germinação , Giberelinas/farmacologia , Oxigenases de Função Mista/genética , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...